Exercises in Algebraic Number Theory

Winter term 2009/2010

Universität Duisburg-Essen
Sheet 1
Institut für Experimentelle Mathematik
Prof. Dr. Gabor Wiese, Dr. Tommaso Centeleghe
To be handed in by: Wednesday, 21 October 2009 (before the lecture).

1. (a) (2 points) Show that there exist infinitely many prime numbers $p \equiv-1 \bmod 3$.
(b) (2 points) Let $a, n \in \mathbb{N}$ with $n \geq 2$ such that $a^{n}-1$ is a prime number. Show that $a=2$ and n is a prime number. Such primes are called Mersenne primes.
2. Let ζ be a root of the polynomial $X^{2}+X+1 \in \mathbb{Z}[X]$ and consider the ring $A:=\mathbb{Z}[\zeta]$. Complex conjugation σ is the only nontrivial Galois autormorphism of $\mathbb{Q}(\zeta) / \mathbb{Q}$ and induces a ring automorphism of A. One disposes of the norm

$$
N: A \rightarrow \mathbb{Z}, \quad a \mapsto a \cdot \sigma(a)
$$

which is (obviously) a multiplicative function. Prove the following assertions (1 point each).
(a) The ring A is Euclidean with respect to the norm N and is, hence, by a well-known theorem factorial, i.e. a unique factorisation domain.
(b) The unit group A^{\times}is equal to $\left\{ \pm 1, \pm \zeta, \pm \zeta^{2}\right\}$ and is cyclic of order 6.
(c) The element $\lambda=1-\zeta$ is a prime element in A and $3=-\zeta^{2} \lambda^{2}$.
(d) The quotient $A /(\lambda)$ is equal to \mathbb{F}_{3}.
3. Let B be a commutative integral domain and $A \subseteq B$ a subring. An element $b \in B$ is called integral over A if there exists a monic polynomial $f \in A[X]$ such that $f(b)=0$.
Suppose that $b, c \in B$ are integral over A with polynomials $f, g \in A[X]$ such that $f(b)=g(c)=0$.
(a) (2 points) Use the resultant to exhibit a monic polynomial $F \in A[X]$ such that $F(b+c)=0$.

Hint: Recall that the resultant of two polynomials can be expressed in terms of the differences of the roots of the polynomials. Introduce an extra polynomial variable Y and consider the polynomials $f(X)$ and $g(Y-X)$.
(b) (2 points) Use the resultant to exhibit a monic polynomial $F \in A[X]$ such that $F(b c)=0$.

Hint: Adapt the construction from (a).
4. (4 points) Let $d \neq 0,1$ be a squarefree integer and consider the field $\mathbb{Q}(\sqrt{d})$.
(a) Compute the minimal polynomial of $a+b \sqrt{d}$ with $a, b \in \mathbb{Q}$.
(b) Assume $d \equiv 2,3 \bmod 4$ and let $a+b \sqrt{d}$ be an integral element over \mathbb{Z} (see previous exercise for the definition). Show that a and b are integers.
(c) Assume $d \equiv 1 \bmod 4$ and let $a+b \sqrt{d}$ be an integral element over \mathbb{Z}. Show that the maximum denominator of a and b (represented in lowest terms) is 2 .

