Exercises in Algebraic Number Theory

Winter term 2009/2010

Universität Duisburg-Essen Institut für Experimentelle Mathematik Prof. Dr. Gabor Wiese, Dr. Tommaso Centeleghe To be handed in by: Wednesday, 21 October 2009 (before the lecture).

- 1. (a) (2 points) Show that there exist infinitely many prime numbers $p \equiv -1 \mod 3$.
 - (b) (2 points) Let $a, n \in \mathbb{N}$ with $n \ge 2$ such that $a^n 1$ is a prime number. Show that a = 2 and n is a prime number. Such primes are called *Mersenne primes*.
- 2. Let ζ be a root of the polynomial $X^2 + X + 1 \in \mathbb{Z}[X]$ and consider the ring $A := \mathbb{Z}[\zeta]$. Complex conjugation σ is the only nontrivial Galois automorphism of $\mathbb{Q}(\zeta)/\mathbb{Q}$ and induces a ring automorphism of A. One disposes of the norm

$$N: A \to \mathbb{Z}, \quad a \mapsto a \cdot \sigma(a),$$

which is (obviously) a multiplicative function. Prove the following assertions (1 point each).

- (a) The ring A is Euclidean with respect to the norm N and is, hence, by a well-known theorem factorial, i.e. a unique factorisation domain.
- (b) The unit group A^{\times} is equal to $\{\pm 1, \pm \zeta, \pm \zeta^2\}$ and is cyclic of order 6.
- (c) The element $\lambda = 1 \zeta$ is a prime element in A and $3 = -\zeta^2 \lambda^2$.
- (d) The quotient $A/(\lambda)$ is equal to \mathbb{F}_3 .
- 3. Let B be a commutative integral domain and $A \subseteq B$ a subring. An element $b \in B$ is called *integral* over A if there exists a monic polynomial $f \in A[X]$ such that f(b) = 0.

Suppose that $b, c \in B$ are integral over A with polynomials $f, g \in A[X]$ such that f(b) = g(c) = 0.

- (a) (2 points) Use the resultant to exhibit a monic polynomial F ∈ A[X] such that F(b + c) = 0.
 Hint: Recall that the resultant of two polynomials can be expressed in terms of the differences of the roots of the polynomials. Introduce an extra polynomial variable Y and consider the polynomials f(X) and g(Y X).
- (b) (2 points) Use the resultant to exhibit a monic polynomial F ∈ A[X] such that F(bc) = 0.
 Hint: Adapt the construction from (a).
- 4. (4 points) Let $d \neq 0, 1$ be a squarefree integer and consider the field $\mathbb{Q}(\sqrt{d})$.
 - (a) Compute the minimal polynomial of $a + b\sqrt{d}$ with $a, b \in \mathbb{Q}$.
 - (b) Assume $d \equiv 2, 3 \mod 4$ and let $a + b\sqrt{d}$ be an integral element over \mathbb{Z} (see previous exercise for the definition). Show that a and b are integers.
 - (c) Assume $d \equiv 1 \mod 4$ and let $a + b\sqrt{d}$ be an integral element over \mathbb{Z} . Show that the maximum denominator of a and b (represented in lowest terms) is 2.

Sheet 1