Exercises in Algebraic Number Theory

Winter term 2009/2010

Universität Duisburg-Essen Institut für Experimentelle Mathematik Prof. Dr. Gabor Wiese, Dr. Tommaso Centeleghe To be handed in by: Friday, 22 January 2010, 2 pm.

- 1. (4 points) Show that $\mathbb{Z}_p = \{x \in \mathbb{Q}_p \mid |x| \le 1\}$ is a discrete valuation ring. Consequently, it is integrally closed in its field of fractions \mathbb{Q}_p .
- 2. (4 points) Compute in \mathbb{Q}_7 with a precision of at least 4 places the following numbers: $-\frac{1}{6}$, $\sqrt{-3}$, $\sqrt[3]{-1}$.
- 3. (4 points)
 - (a) The *p*-adic Newton method. Let $f \in \mathbb{Z}_p[X]$ be a polynomial and $a \in \mathbb{Z}_p$ such that $|f(a)|_p < 1$ and $|\frac{f(a)}{(f'(a))^2}|_p = \epsilon < 1$. Define a sequence $(a_n)_n$ by

$$a_0 := a, \quad a_{n+1} := a_n - \frac{f(a)}{f'(a)}.$$

Show that the sequence $(a_n)_n$ converges to some $x \in \mathbb{Z}_p$ with f(x) = 0 and

$$|x - a_n|_p \le \epsilon^{2^n}.$$

Hint: Show by induction the following assertions:

- $|f(a_n)/f'(a_n)|_p \le \epsilon^{2^n} |f'(a)|_p$,
- $|f(a_n)|_p \le \epsilon^{2^n} (|f'(a)|_p)^2$,

•
$$|f(a_n)|_p = |f'(a)|_p$$
.

- (b) Show that \mathbb{Z}_p contains the group of (p-1)th roots of unity.
- 4. (4 points) Let K be a field and p(T) a nonconstant irreducible polynomial in K[T]. In Exercise 2, Sheet 11, the p(T)-absolute value $|\cdot|_{p(T)}$ on K(T) was defined. Put L := K[X]/(p(T)). Show that the completion of K(T) with respect to $|\cdot|_{p(T)}$ is equal to L((T)), the field of formal power series over L.

Sheet 12