Exercises in Algebraic Number Theory

Winter term 2009/2010

Universität Duisburg-Essen
Sheet 13
Institut für Experimentelle Mathematik
Prof. Dr. Gabor Wiese, Dr. Tommaso Centeleghe
To be handed in by: Friday, 29 January 2010, 2 pm.

1. (4 points) Let p be a prime number. Show that the multiplicative group $\mathbb{Q}_{p}^{\times}=\mathbb{Q}_{p} \backslash\{0\}$ is equal to the direct product $\mu_{p-1} \times\left(1+p \mathbb{Z}_{p}\right) \times p^{\mathbb{Z}}$, where μ_{p-1} is the group of $(p-1)$ th roots of unity.
2. (4 points) Let p be a prime number. Consider the quotient group $G:=\mathbb{Q}_{p}^{\times} / \mathbb{Q}_{p}^{\times 2}$, where $\mathbb{Q}_{p}^{\times 2}$ denotes the subgroup of squares.
Show that G is an elementary abelian 2-group, i.e. that G is of the form $\underbrace{C_{2} \times C_{2} \times \cdots \times C_{2}}_{r-\text { times }}$. Moreover, show that $r=2$ if $p>2$ and that $r=3$ if $p=2$.
3. (4 points) Let p be a prime number and let $\overline{\mathbb{Q}}_{p}$ be an algebraic closure of \mathbb{Q}_{p}. For $f \in \mathbb{N}$, let ζ_{f} be a primitive $\left(p^{f}-1\right)$ th root of unity in $\overline{\mathbb{Q}}_{p}$.
(a) Show that the series $\sum_{f=1}^{\infty} \zeta_{f} p^{f}$ does not converge in $\overline{\mathbb{Q}}_{p}$.
(b) Show that $\overline{\mathbb{Q}}_{p}$ is not complete.
4. (4 points) In the lecture we proved the following corollary of Hensel's lemma (Corollary 14.4): Let K be a complete ultrametric field with valuation ring \mathcal{O}, valuation ideal \mathfrak{P} and residue field $\mathbb{F}:=\mathcal{O} / \mathfrak{P}$ and let $f \in \mathcal{O}[X]$ be a monic polynomial and $\bar{f} \in \mathbb{F}[X]$ its coefficient-wise reduction. If $\alpha \in \mathbb{F}$ is a simple zero of \bar{f}, then there is $\beta \in \mathcal{O}$ with $f(\beta)=0$ and $\alpha=\beta+\mathfrak{P} \in \mathbb{F}$.
(a) Show by giving a counterexample that the assumption 'simple' is necessary.
(b) Show by giving a counterexample that the assumption 'complete' is necessary.
