Exercises in Algebraic Number Theory

Winter term 2009/2010

Universität Duisburg-Essen
Sheet 2
Institut für Experimentelle Mathematik
Prof. Dr. Gabor Wiese, Dr. Tommaso Centeleghe
To be handed in by: Friday, 30 October 2009, 2 pm.

1. (4 points) Let R be a commutative ring and let S_{1}, \ldots, S_{n} be integral ring extensions of R.
(a) Prove that $\prod_{i=1}^{n} S_{i}$ is an integral ring extension of R.
(b) Let $T \subseteq R$ be a subring such that $R \backslash T$ is multiplicatively closed. Prove that T is integrally closed in R.
2. (4 points) Let K be a field. A subring $R \subseteq K$ is called a valuation ring of K if for each $x \in K^{\times}$we have $x \in R$ or $x^{-1} \in R$.
(a) Show that every valuation ring of K is a local ring.
(b) Show that any valuation ring of K is integrally closed.
3. (4 points) Show that the discriminant d_{K} of any number field K / \mathbb{Q} is always congruent to 0 or 1 modulo 4.

Hint: Use the Leibniz formula for computing the determinant of the matrix $\left(\sigma_{i}\left(\alpha_{j}\right)\right)_{i, j}$, i.e. (in the notation of the lecture)

$$
\sum_{\tau \in S_{n}} \operatorname{sgn}(\tau) \prod_{i=1}^{n} \sigma_{i}\left(\alpha_{\tau(i)}\right)
$$

and divide it up into the sum A over the even permutations minus the sum B over the odd permutations. Show next that $A+B$ and $A B$ are rational integers. Conclude from this.
4. (4 points) Let R be an integral domain whose field of fractions $K:=\operatorname{Frac}(R)$ is a number field. Prove that the ideal quotient of fractional ideals satisfies the following properties:

$$
H:(I J)=(H: I): J, \quad\left(\bigcap_{k} I_{k}\right): J=\bigcap_{k}\left(I_{k}: J\right), \quad I:\left(\sum_{k} J_{k}\right)=\bigcap_{k}\left(I: J_{k}\right)
$$

