Exercises in Algebraic Number Theory

Winter term 2009/2010

Universität Duisburg-Essen Institut für Experimentelle Mathematik Prof. Dr. Gabor Wiese, Dr. Tommaso Centeleghe To be handed in by: Friday, 6 November 2009, 2 pm.

1. (4 points)

- (a) Show that the fractional ideals of \mathbb{Z} form an abelian group (with respect to the multiplication of ideals), which is isomorphic to $\mathbb{Q}^{\times}/\mathbb{Z}^{\times}$.
- (b) Consider the ring R = Z[√-61]. Show that (2, 3+√-61) and (5, 3+√-61) are invertible ideals in R and determine their order in Pic(R).
- 2. (4 points) Consider the ring $R = \mathbb{Z}[\sqrt{-19}]$. Use for this exercise that $\operatorname{Pic}(R)$ is a finite group of order 3. Determine all integral solutions of the equation $x^2 + 19 = y^5$.
- 3. (4 points) Show the following variant of Theorem 3.12 of the lecture: Let R be an integral domain and I a fractional R-ideal. Then the following are equivalent:
 - (i) I is invertible.
 - (ii) I is finitely generated and for all prime ideals $\mathfrak{P} \triangleleft R$ the localisation $I_{\mathfrak{P}}$ is a principal ideal in $R_{\mathfrak{P}}$.

You may use Theorem 3.12.

- 4. (4 points) Let R be a commutative ring.
 - (a) Show that every R module is a quotient of a free R-module. You can, for instance, make use of the universal mapping property of free modules.
 - (b) Let M be an R-module. A *free resolution* of M is an exact sequence

$$\cdots \to F_3 \to F_2 \to F_1 \to F_0 \to M \to 0$$

consisting of free R-modules F_n for $n \in \mathbb{N}$. Show that every R-module M admits a free resolution. Hint: Iterate (a). Sheet 3