Exercises in Algebraic Number Theory

Winter term 2009/2010

Universität Duisburg-Essen Institut für Experimentelle Mathematik Prof. Dr. Gabor Wiese, Dr. Tommaso Centeleghe To be handed in by: Friday, 20 November 2009, 2 pm.

- 1. (4 points) Let K be a number field and L/K and M/K finite extensions. Prove that the ring of integers of the compositum LM need not be equal to the composite of the rings of integers of L and M.
- 2. (4 points) Let $d \neq 0, 1$ be a squarefree integer. Show that the index of $\mathbb{Z}[\sqrt{d}]$ in the ring of integers of $\mathbb{Q}(\sqrt{d})$ is 1 or 2.
- 3. (4 points) Let $f \in \mathbb{Z}[X]$ and $g_1, \ldots, g_r \in \mathbb{Z}[X]$ be monic distinct irreducible polynomials such that $\overline{f} = \overline{g}_1 \cdot \ldots \cdot \overline{g}_r \in \mathbb{F}_p[X]$, where the notation \overline{f} means the reduction of the (coefficients of the) polynomial modulo p.

Consider the ring $R = \mathbb{Z}[X]/(f(X)) = \mathbb{Z}[\alpha]$ for some $\alpha \in \overline{\mathbb{Q}}$ and let $\mathfrak{p}_i = (p, g_i(\alpha)) \triangleleft R$ for $i = 1, \ldots, r$ be the prime ideal already considered in the lecture.

Prove that $pR = \mathfrak{p}_1\mathfrak{p}_2\ldots\mathfrak{p}_r$.

- 4. (4 points)
 - (a) Let $f \in \mathbb{Z}[X]$ be any nonconstant polynomial. Prove that f has a zero mod p for infinitely many primes p.

Hint: If f(0) = 1, then consider f(n!). Next consider g(x) = f(xf(0))/f(0).

(b) Let K be any number field. Prove that there are infinitely many primes 𝔅 of K of residue degree 1, i.e. f(𝔅/(p)) = 1, where (p) = 𝔅 ∩ ℤ.

Sheet 5