Exercises in Algebraic Number Theory

Winter term 2009/2010

Universität Duisburg-Essen
Sheet 5
Institut für Experimentelle Mathematik
Prof. Dr. Gabor Wiese, Dr. Tommaso Centeleghe
To be handed in by: Friday, 20 November 2009, 2 pm.

1. (4 points) Let K be a number field and L / K and M / K finite extensions. Prove that the ring of integers of the compositum $L M$ need not be equal to the composite of the rings of integers of L and M.
2. (4 points) Let $d \neq 0,1$ be a squarefree integer. Show that the index of $\mathbb{Z}[\sqrt{d}]$ in the ring of integers of $\mathbb{Q}(\sqrt{d})$ is 1 or 2 .
3. (4 points) Let $f \in \mathbb{Z}[X]$ and $g_{1}, \ldots, g_{r} \in \mathbb{Z}[X]$ be monic distinct irreducible polynomials such that $\bar{f}=\bar{g}_{1} \cdot \ldots \cdot \bar{g}_{r} \in \mathbb{F}_{p}[X]$, where the notation \bar{f} means the reduction of the (coefficients of the) polynomial modulo p.
Consider the ring $R=\mathbb{Z}[X] /(f(X))=\mathbb{Z}[\alpha]$ for some $\alpha \in \overline{\mathbb{Q}}$ and let $\mathfrak{p}_{i}=\left(p, g_{i}(\alpha)\right) \triangleleft R$ for $i=1, \ldots, r$ be the prime ideal already considered in the lecture.

Prove that $p R=\mathfrak{p}_{1} \mathfrak{p}_{2} \ldots \mathfrak{p}_{r}$.
4. (4 points)
(a) Let $f \in \mathbb{Z}[X]$ be any nonconstant polynomial. Prove that f has a zero $\bmod p$ for infinitely many primes p.
Hint: If $f(0)=1$, then consider $f(n!)$. Next consider $g(x)=f(x f(0)) / f(0)$.
(b) Let K be any number field. Prove that there are infinitely many primes \mathfrak{P} of K of residue degree 1 , i.e. $f(\mathfrak{p} /(p))=1$, where $(p)=\mathfrak{P} \cap \mathbb{Z}$.

