# Exercises in Algebraic Number Theory 

Winter term 2009/2010

Universität Duisburg-Essen
Sheet 6
Institut für Experimentelle Mathematik
Prof. Dr. Gabor Wiese, Dr. Tommaso Centeleghe
To be handed in by: Friday, 27 November 2009, 2 pm.

1. (4 points) Let $a, b$ be coprime integers with $b>1$. Show that the following statements are equivalent:
(i) $a$ is a quadratic residue modulo $b$.
(ii) $a$ is a quadratic residue modulo every prime divisor of $b$ and

- $a \equiv 1 \bmod 4$ if $4 \mid b$,
- $a \equiv 1 \bmod 8$ if $8 \mid b$.

2. (4 points) Show that an odd prime $p$ is of the form $p=x^{2}+2 y^{2}$ with $x, y \in \mathbb{Z}$ if and only if $p \equiv 1,3 \bmod 8$.
3. (4 points) Let $p$ be a prime and $a, b \in \mathbb{F}_{p}$. Sketch a fast algorithm that decides whether the equation

$$
X^{2}+a X+b=0
$$

has a solution in $\mathbb{F}_{p}$.
Note: Trying out all possibilities is not considered a fast algorithm (unless $p=2$ )! It is not necessary to construct a solution.
4. (4 points)
(a) Let $L / K$ be a Galois extension of number fields and let $\mathfrak{P}$ be a prime of $L$ such that $\mathfrak{P} / \mathfrak{p}$ is unramified (i.e. $e(\mathfrak{P} / \mathfrak{p})=1$ ) with $\mathfrak{p}=\mathfrak{P} \cap K$. Let $q$ be the norm of $\mathfrak{p} /(p)$ with $(p)=\mathfrak{p} \cap \mathbb{Z}$. Show that there exists a unique element $\phi_{\mathfrak{P}}$ in the decomposition group $G_{\mathfrak{P}}$ such that its image in the Galois group of the residue fields $\operatorname{Gal}(\kappa(\mathfrak{P}) / \kappa(\mathfrak{p}))$ is given by $x \mapsto x^{q}$. Show also that $\phi_{\mathfrak{P}}$ generates $G_{\mathfrak{P}}$, which is hence a cyclic group.
(b) Let $L / K$ be a Galois extension of number fields with Galois group $G$ which is not a cyclic group. Show that no prime is inert in $L / K$.

