Exercises in Algebraic Number Theory

Winter term 2009/2010

Universität Duisburg-Essen
Sheet 7
Institut für Experimentelle Mathematik
Prof. Dr. Gabor Wiese, Dr. Tommaso Centeleghe
To be handed in by: Friday, 4 December 2009, 2 pm.

1. (4 points) Let K be a number field and L / K and M / K finite extensions. Fix a prime \mathfrak{p} of K. Show:
(a) If \mathfrak{p} is unramified in L and in M, then it is unramified in $L M$.
(b) If \mathfrak{p} is completely split in L and in M, then it is completely split in $L M$.

Hint: You can use the inertia field and the decomposition field.
2. (4 points) Compute the ramified primes and the inertia fields in the splitting field of the polynomial $X^{4}-19 \in \mathbb{Z}[X]$.
Hint: Use Proposition 7.2 from the lecture.
3. (4 points) Let α be a zero of the polynomial $f(X)=X^{3}-X-1 \in \mathbb{Z}[X]$ and put $R=\mathbb{Z}[\alpha]$. Show that R is a Dedekind ring. Determine all prime ideals of R of norm at most 30 . Show that the unit group R^{\times}is infinite.

Hint: Use Theorem 4.13 and Proposition 7.2 from the lecture. For the factorisation of f modulo small primes you may use a computer and just state the result.
4. (4 points) For $n \in \mathbb{N}$ with $n \geq 2$ let ϕ_{n} be the n-th cyclotomic polynomial in $\mathbb{Z}[X]$. Compute $\phi_{n}(1)$. Hint: Look at prime powers $n=p^{k}$ first and for general n consider $X^{n}-1=\prod_{d \mid n} \phi_{d}(X)$.

