Exercises in Algebraic Number Theory

Winter term 2009/2010

Universität Duisburg-Essen Institut für Experimentelle Mathematik Prof. Dr. Gabor Wiese, Dr. Tommaso Centeleghe To be handed in by: Friday, 4 December 2009, 2 pm.

- 1. (4 points) Let K be a number field and L/K and M/K finite extensions. Fix a prime p of K. Show:
 - (a) If \mathfrak{p} is unramified in L and in M, then it is unramified in LM.
 - (b) If p is completely split in L and in M, then it is completely split in LM.

Hint: You can use the inertia field and the decomposition field.

2. (4 points) Compute the ramified primes and the inertia fields in the splitting field of the polynomial $X^4 - 19 \in \mathbb{Z}[X]$.

Hint: Use Proposition 7.2 from the lecture.

3. (4 points) Let α be a zero of the polynomial $f(X) = X^3 - X - 1 \in \mathbb{Z}[X]$ and put $R = \mathbb{Z}[\alpha]$. Show that R is a Dedekind ring. Determine all prime ideals of R of norm at most 30. Show that the unit group R^{\times} is infinite.

Hint: Use Theorem 4.13 and Proposition 7.2 from the lecture. For the factorisation of f modulo small primes you may use a computer and just state the result.

4. (4 points) For $n \in \mathbb{N}$ with $n \ge 2$ let ϕ_n be the *n*-th cyclotomic polynomial in $\mathbb{Z}[X]$. Compute $\phi_n(1)$. Hint: Look at prime powers $n = p^k$ first and for general *n* consider $X^n - 1 = \prod_{d|n} \phi_d(X)$.

Sheet 7