Exercises in Algebraic Number Theory

Winter term 2009/2010

Universität Duisburg-Essen Institut für Experimentelle Mathematik Prof. Dr. Gabor Wiese, Dr. Tommaso Centeleghe To be handed in by: Friday, 11 December 2009, 2 pm.

- 1. (4 points) Describe the quadratic subfields of $\mathbb{Q}(\zeta_n)$ for $n \geq 3$.
- 2. (4 points)
 - (a) Let $n \in \mathbb{N}$. Conclude from Sheet 5, Exercise 4 (b), that there are infinitely many primes p that are congruent to 1 modulo n.
 - (b) Let A be a finite abelian group. Show that there is a Galois extension K/\mathbb{Q} with Galois group isomorphic to A.
- 3. (4 points) Prove that a subgroup $L \subset \mathbb{R}^n$ is of the form $L \cong \mathbb{Z}\omega_1 \oplus \mathbb{Z}\omega_2 \oplus \cdots \oplus \mathbb{Z}\omega_r$ for some $\omega_i \in \mathbb{R}^n$ if and only if it is discrete. For n = 1 show that L is either of the form $\mathbb{Z}\omega$ for some $\omega \in \mathbb{R}$ or a dense subgroup.
- 4. (4 points) Consider the lattice $L = \mathbb{Z}\omega_1 \oplus \cdots \oplus \mathbb{Z}\omega_r \subset \mathbb{R}^n$. Then the following conditions are equivalent:
 - (i) L has maximal rank (i.e. r = n).
 - (ii) The quotient group \mathbb{R}^n/L is compact in the quotient topology.
 - (iii) There exists a bounded subset $B \subset \mathbb{R}^n$ such that $L + B = \mathbb{R}^n$.

Sheet 8