Exercises in Algebraic Number Theory

Winter term 2009/2010

Universität Duisburg-Essen
Sheet 9
Institut für Experimentelle Mathematik
Prof. Dr. Gabor Wiese, Dr. Tommaso Centeleghe
To be handed in by: Friday, 18 December 2009, 2 pm.

1. (4 points) [Minkowski's theorem on linear forms] Suppose that n linear forms on \mathbb{R}^{n} with real coefficients are explicitly given by $L_{i}(x)=\sum_{j=1}^{n} a_{i, j} x_{j}$ for $x=\left(x_{1}, \ldots, x_{n}\right)$ such that the matrix $A=\left(a_{i, j}\right)_{i, j}$ has a nonzero determinant. Let c_{1}, \ldots, c_{n} be positive real numbers with the property $\prod_{i=1}^{n} c_{i}>|\operatorname{det}(A)|$.
Show that there exists a nonzero $x \in \mathbb{Z}^{n}$ such that

$$
\left|L_{i}(x)\right|<c_{i} \quad \text { for all } i=1, \ldots, n
$$

2. (4 points) Determine the class number of $\mathbb{Q}(\sqrt{d})$ for $d=-41,-47,-163$.
3. (4 points) Show that all real quadratic fields of discriminant $d<40$ have class number 1 . What is the class number of $\mathbb{Q}(\sqrt{10})$?
4. (4 points) Let K be a number field and $R \subset K$ a subring of K that is a Dedekind ring. Show that there exists a set of primes S of $\mathcal{O}:=\mathcal{O}_{K}$ (the ring of integers of K) such that

$$
R=\bigcap_{\mathfrak{p} \notin S} \mathcal{O}_{\mathfrak{p}}=\left\{x \in K \mid \operatorname{ord}_{\mathfrak{p}}(x) \geq 0 \forall \mathfrak{p} \notin S\right\}
$$

[This exercise only needs the tools from Sections 3 and 4 of the lecture.]

