Exercises in Algebraic Number Theory

Winter term 2009/2010

Universität Duisburg-Essen Institut für Experimentelle Mathematik Prof. Dr. Gabor Wiese, Dr. Tommaso Centeleghe To be handed in by: Friday, 18 December 2009, 2 pm.

1. (4 points) [Minkowski's theorem on linear forms] Suppose that n linear forms on \mathbb{R}^n with real coefficients are explicitly given by $L_i(x) = \sum_{j=1}^n a_{i,j}x_j$ for $x = (x_1, \ldots, x_n)$ such that the matrix $A = (a_{i,j})_{i,j}$ has a nonzero determinant. Let c_1, \ldots, c_n be positive real numbers with the property $\prod_{i=1}^n c_i > |\det(A)|$.

Show that there exists a nonzero $x \in \mathbb{Z}^n$ such that

$$|L_i(x)| < c_i$$
 for all $i = 1, ..., n$.

- 2. (4 points) Determine the class number of $\mathbb{Q}(\sqrt{d})$ for d = -41, -47, -163.
- 3. (4 points) Show that all real quadratic fields of discriminant d < 40 have class number 1. What is the class number of $\mathbb{Q}(\sqrt{10})$?
- 4. (4 points) Let K be a number field and $R \subset K$ a subring of K that is a Dedekind ring. Show that there exists a set of primes S of $\mathcal{O} := \mathcal{O}_K$ (the ring of integers of K) such that

$$R = \bigcap_{\mathfrak{p} \notin S} \mathcal{O}_{\mathfrak{p}} = \{ x \in K \mid \operatorname{ord}_{\mathfrak{p}}(x) \ge 0 \; \forall \; \mathfrak{p} \notin S \}.$$

[This exercise only needs the tools from Sections 3 and 4 of the lecture.]

Sheet 9